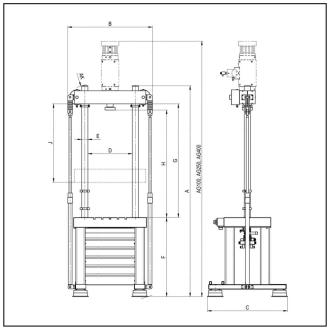


Produktinformation

CTA: 70966 70967

Servohydraulische Lastrahmen – HB Serie, 2-säulig

HB100 mit T-Nutenplatte und mechanischen Probenhaltern



Lastrahmen der HB-Serie mit dem in der oberen Traverse eingebauten Prüfzylinder sind besonders vielseitig einsetzbar. Insbesondere in der Ausführung mit integrierter T-Nutenplatte können neben Standard-Dauerschwingversuchen auch Biege- und Bauteilversuche durchgeführt werden. Der Kraftaufnehmer kann je nach Anwendung entweder auf der unteren Traverse befestigt werden oder direkt an der Kolbenstange.

Funktionsbeschreibung

Die 2-Säulen-Lastrahmen sind konzipiert für die Werkstoff- und Bauteilprüfung unter schwingender Beanspruchung im geschlossenen Kraftfluss. Der Rahmen steht auf schwingungsisolierenden Nivellierelementen. Im normalen Betrieb werden daher keine nennenswerten Kräfte in den Boden eingeleitet. Bei kritischen Versuchen oder Aufstellbedingungen empfiehlt sich der Einsatz der optional erhältlichen Luftfedern, die eine Eigenfrequenz von ca. 3 – 6 Hz aufweisen.

Die besonders hohe axiale und laterale Steifigkeit der HB-Lastrahmen steigert die Leistungsfähigkeit des Prüfsystems. Sie ermöglicht höhere Frequenzen und Probenverformungen. Außerdem können hohe Seiten-

Zeichnung HB-Lastrahmen

kräfte, wie sie bei Druck- und Biegeversuchen auftreten können, problemlos aufgenommen werden.

Die Rahmen werden höchst präzise ausgerichtet. Nach Einbau von Prüfzylinder und Kraftaufnehmer beträgt Ausrichtgenauigkeit +0,1 mm pro Meter Abstand, bei einem Abstand kleiner 350 mm beträgt der Versatz konstant 0,05 mm. Die Planparallelität der Montageflächen ist gleich oder besser 0,03 mm je 100 mm. Alle Werkzeuge und ZwickRoell-Kraftaufnehmer werden über Flansche mit Zentrierung montiert.

Vorteile und Merkmale

- 4 Standard-Nenngrößen von 50 kN bis 2500 kN
- Auf der oberen Traverse montierter Prüfzylinder.
- Ergonomische Arbeitshöhe
- Hydraulische Klemmung und Verstellung zum einfachen Positionieren des oberen Querhauptes.
- Umfangreiches Zubehör wie z.B. hydraulische Spannzeuge, Druckplatten, Biegevorrichtung etc.
- Schutzumhausung zur Erfüllung der CE-Maschinenrichtlinie.
- In der Variante mit integrierter T-Nutenplatte besonders geeignet für Ermüdungsversuche an Bauteilen.

Produktinformation

Servohydraulische Lastrahmen - HB Serie, 2-säulig

Technische Daten

Dynamische Nennkraft	50	100	250	500	kN
Traversen-Klemmung	elektro-hydrau- lisch	elektro-hydrau- lisch	elektro-hydrau- lisch	elektro-hydrau- lisch	
Traversen-Verstellung	elektro-hydrau- lisch	elektro-hydrau- lisch	elektro-hydrau- lisch	elektro-hydrau- lisch	
A _{G100} – Max. Höhe des Prüfrahmens mit 100 mm Hub Zylinder	3175 (3675) ¹⁾	3259 (3759) ¹⁾	3523 (4023) ¹⁾	4045 (4545) ¹⁾	mm
A _{G250} – Max. Höhe des Prüfrahmens mit 250 mm Hub Zylinder	3475 (3975) ¹⁾	3559 (4059) ¹⁾	3823 (4323) ¹⁾	4345 (4845) ¹⁾	mm
${\rm A_{G400}}$ – Max. Höhe des Prüfrahmens mit 400 mm Hub Zylinder	-	3859 (4359) ¹⁾	4123 (4623) ¹⁾	4635 (5135) ¹⁾	
A – Max. Säulenhöhe	2690 (3190) ¹⁾	2690 (3190) ¹⁾	2900 (3400) ¹⁾	3250 (3750) ¹⁾	mm
A _K – Kippmaß zum Aufrichten	2820 (3320) ¹⁾	2820 (3320) ¹⁾	3060 (3560) ¹⁾	3500 (3980) ¹⁾	mm
B – Max. Breite des Prüfrahmens	1079	1079	1197	1525	mm
C – Max.Tiefe des Prüfrahmens	780 (1020) ²⁾	780 (1020) ²⁾	1130 (1130) ²⁾	1130 (1370) ²⁾	mm
D ₁ – Säulenabstand	565	565	670	800	mm
E – Säulendurchmesser	80	80	100	120	mm
F – Höhe Oberkante untere Traverse ³⁾	950	950	890	900	mm
G – Max. Prüfraumhöhe ⁴⁾	1510 (2010) ¹⁾	1510 (2010) ¹⁾	1705 (2205) ¹⁾	2120 (2620) ¹⁾	mm
H – Max. Arbeitsraumhöhe ⁵⁾	1434 (1934) ¹⁾	1434 (1934) ¹⁾	1614 (2114) ¹⁾	2020 (2520) ¹⁾	mm
J – Verstellweg Traverse	1000 (1250) ¹⁾	1000 (1250) ¹⁾	1150 (1400) ¹⁾	1250 (1400) ¹⁾	mm
Gewicht ohne T-Nutenplatte ⁶⁾	899 (945) ¹⁾	895 (941) ¹⁾	1361 (1430) ¹⁾	3660 (3780) ¹⁾	kg
Gewicht mit T-Nutenplatte ⁶⁾	1137 (1182) ¹⁾	1133 (1178) ¹⁾	2082 (2232) ¹⁾	4860 (4980) ¹⁾	kg
Rahmensteifigkeit bei Traversenabstand 1000 mm ⁷⁾	730	730	988	1529	kN/mm
Rahmensteifigkeit bei Traversenabstand 1000 mm ²⁾	870	870	1332	1848	kN/mm
Artikel-Nr.					
Standard Höhe	077533	924779	040159	079720	
Standard Höhe mit T-Nutenplatte	077370	079752	040158	079728	
Extra hoch +500 mm	750972	077534	079755	079721	
Extra hoch +500 mm mit T-Nutenplatte	077535	079753	079756	079733	

¹⁾ Um 500 mm erhöhte Variante

²⁾ Variante mit T-Nutenplatte

³⁾ Mit Schwingungsdämpferfüßen

⁴⁾ Abstand zw. unterer und oberer Traverse

⁵⁾ Abstand zw. Kolbenflansch und oberer Traverse bei eingefahrenem Kolben

⁶⁾ Gewicht ohne Zylinder, Kraftaufnehmer und irgendwelche Werkzeuge

⁷⁾ Standard Tischplatte

Produktinformation

Servohydraulische Lastrahmen - HB Serie, 2-säulig

Zubehör

Schwingungsdämpferfüße

Gummi-Lufteder Element zur Stoß- und Schwingungsentkopplung, Eigenfrequenz in Abhängigkeit der statischen Belastung 3 - 6 Hz, Maximal zulässiger Druck 6 bar.

Beschreibung	Artikelnummer
Schwingungsdämpferfüße für HB 50 / 100	924749
Schwingungsdämpferfüße für HB 250	924770
Schwingungsdämpferfüße für HB 500	935215

Schutzeinrichtung

Aluminiumprofil-Konstruktion mit Makrolonscheiben, umschließt die Prüfmaschine auf allen vier Seiten, Schutztür vorne elektrisch überwacht und verriegelt.

Beschreibung	Artikelnummer
Schutzeinrichtung für HB 50 / 100	935500
Schutzeinrichtung für HB 50 / 100 - 500 mm erhöht	1014330
Schutzeinrichtung für HB 250	007594
Schutzeinrichtung für HB 250 - 500 mm erhöht	1014331
Schutzeinrichtung für HB 500	079736
Schutzeinrichtung für HB 500 - 500 mm erhöht	079738